Исследование работы основных логических элементов. Исследование логических элементов ттл, эсл, моп Аксиомы алгебры логики

Электрическая схема, предназначенная для выполнения какой-либо логической операции с входными данными, называется логическим элементом. Входные данные представляются здесь в виде напряжений различных уровней, и результат логической операции на выходе - также получается в виде напряжения определенного уровня.

Операнды в данном случае подаются - на вход логического элемента поступают сигналы в форме напряжения высокого или низкого уровня, которые и служат по сути входными данными. Так, напряжение высокого уровня - это логическая единица 1 - обозначает истинное значение операнда, а напряжение низкого уровня 0 - значение ложное. 1 - ИСТИНА, 0 - ЛОЖЬ.

Логический элемент - элемент, осуществляющий определенные логические зависимость между входными и выходными сигналами. Логические элементы обычно используются для построения логических схем вычислительных машин, дискретных схем автоматического контроля и управления. Для всех видов логических элементов, независимо от их физической природы, характерны дискретные значения входных и выходных сигналов.

Логические элементы имеют один или несколько входов и один или два (обычно инверсных друг другу) выхода. Значения «нулей» и «единиц» выходных сигналов логических элементов определяются логической функцией, которую выполняет элемент, и значениями «нулей» и «единиц» входных сигналов, играющих роль независимых переменных. Существуют элементарные логические функции, из которых можно составить любую сложную логическую функцию.

В зависимости от устройства схемы элемента, от ее электрических параметров, логические уровни (высокие и низкие уровни напряжения) входа и выхода имеют одинаковые значения для высокого и низкого (истинного и ложного) состояний.

Традиционно логические элементы выпускаются в виде специальных радиодеталей - интегральных микросхем. Логические операции, такие как конъюнкция, дизъюнкция, отрицание и сложение по модулю (И, ИЛИ, НЕ, исключающее ИЛИ) - являются основными операциями, выполняемыми на логических элементах основных типов. Далее рассмотрим каждый из этих типов логических элементов более внимательно.

Логический элемент «И» - конъюнкция, логическое умножение, AND


«И» - логический элемент, выполняющий над входными данными операцию конъюнкции или логического умножения. Данный элемент может иметь от 2 до 8 (наиболее распространены в производстве элементы «И» с 2, 3, 4 и 8 входами) входов и один выход.

Условные обозначения логических элементов «И» с разным количеством входов приведены на рисунке. В тексте логический элемент «И» с тем или иным числом входов обозначается как «2И», «4И» и т. д. - элемент «И» с двумя входами, с четырьмя входами и т. д.


Таблица истинности для элемента 2И показывает, что на выходе элемента будет логическая единица лишь в том случае, если логические единицы будут одновременно на первом входе И на втором входе. В остальных трех возможных случаях на выходе будет ноль.

На западных схемах значок элемента «И» имеет прямую черту на входе и закругление на выходе. На отечественных схемах - прямоугольник с символом «&».

Логический элемент «ИЛИ» - дизъюнкция, логическое сложение, OR


«ИЛИ» - логический элемент, выполняющий над входными данными операцию дизъюнкции или логического сложения. Он так же как и элемент «И» выпускается с двумя, тремя, четырьмя и т. д. входами и с одним выходом. Условные обозначения логических элементов «ИЛИ» с различным количеством входов показаны на рисунке. Обозначаются данные элементы так: 2ИЛИ, 3ИЛИ, 4ИЛИ и т. д.


Таблица истинности для элемента «2ИЛИ» показывает, что для появления на выходе логической единицы, достаточно чтобы логическая единица была на первом входе ИЛИ на втором входе. Если логические единицы будут сразу на двух входах, на выходе также будет единица.

На западных схемах значок элемента «ИЛИ» имеет закругление на входе и закругление с заострением на выходе. На отечественных схемах - прямоугольник с символом «1».

Логический элемент «НЕ» - отрицание, инвертор, NOT

«НЕ» - логический элемент, выполняющий над входными данными операцию логического отрицания. Данный элемент, имеющий один выход и только один вход, называют еще инвертором, поскольку он на самом деле инвертирует (обращает) входной сигнал. На рисунке приведено условное обозначение логического элемента «НЕ».

Таблица истинности для инвертора показывает, что высокий потенциал на входе даёт низкий потенциал на выходе и наоборот.

На западных схемах значок элемента «НЕ» имеет форму треугольника с кружочком на выходе. На отечественных схемах - прямоугольник с символом «1», с кружком на выходе.

Логический элемент «И-НЕ» - конъюнкция (логическое умножение) с отрицанием, NAND

«И-НЕ» - логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Другими словами, это в принципе элемент «И», дополненный элементом «НЕ». На рисунке приведено условное обозначение логического элемента «2И-НЕ».


Таблица истинности для элемента «И-НЕ» противоположна таблице для элемента «И». Вместо трех нулей и единицы - три единицы и ноль. Элемент «И-НЕ» называют еще «элемент Шеффера» в честь математика Генри Мориса Шеффера, впервые отметившего значимость этой в 1913 году. Обозначается как «И», только с кружочком на выходе.

Логический элемент «ИЛИ-НЕ» - дизъюнкция (логическое сложение) с отрицанием, NOR

«ИЛИ-НЕ» - логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Иначе говоря, это элемент «ИЛИ», дополненный элементом «НЕ» - инвертором. На рисунке приведено условное обозначение логического элемента «2ИЛИ-НЕ».


Таблица истинности для элемента «ИЛИ-НЕ» противоположна таблице для элемента «ИЛИ». Высокий потенциал на выходе получается лишь в одном случае - на оба входа подаются одновременно низкие потенциалы. Обозначается как «ИЛИ», только с кружочком на выходе, обозначающим инверсию.

Логический элемент «исключающее ИЛИ» - сложение по модулю 2, XOR

«исключающее ИЛИ» - логический элемент, выполняющий над входными данными операцию логического сложения по модулю 2, имеет два входа и один выход. Часто данные элементы применяют в схемах контроля. На рисунке приведено условное обозначение данного элемента.

Изображение в западных схемах - как у «ИЛИ» с дополнительной изогнутой полоской на стороне входа, в отечественной - как «ИЛИ», только вместо «1» будет написано «=1».


Этот логический элемент еще называют «неравнозначность». Высокий уровень напряжения будет на выходе лишь тогда, когда сигналы на входе не равны (на одном единица, на другом ноль или на одном ноль, а на другом единица) если даже на входе будут одновременно две единицы, на выходе будет ноль - в этом отличие от «ИЛИ». Данные элементы логики широко применяются в сумматорах.

Цель работы : 1) изучение принципов построения серийных логических микросхем;

2) исследование логических функций одного и двух переменных и их реализация.

Общие сведения:

Логические элементы (ЛЭ) широко применяются в автоматике, вычислительной технике и цифровых измерительных приборах. Их создают на базе электронных устройств, работающих в ключевом режиме, при котором уровни сигналов могут принимать только два значения. В положительной логике принято, что высокий уровень сигнала соответствует логической единице (1), а низкий – логическому нулю (0).

Логическая функция выражает зависимость выходных логических переменных от входных и принимает значения 0 или 1. Любую логическую функцию удобно представить в виде таблицы состояний (таблицы истинности), где записываются возможные комбинации аргументов и соответствующие им функции.

Работу логических устройств анализируют с помощью алгебры логики (булевой алгебры), где переменная может принимать только два значения: 0 или 1.

Основными логическими операциями являются (табл.1):

1) логическое умножение: y =x 1 ·x 2 ·...·x n (читается “и х 1 , и х 2 ,..., и х n ”);

2) логическое сложение: y =x 1 +x 2 +...+x n (читается “или х 1 , или х 2 ,..., или х n ”);

3) логическое отрицание: (читается “не х ”).

Как видно из табл.1, выходной сигнал у элемента ИЛИ равен 1, если хотя бы один из его входов подан сигнал 1. Элемент И выдает 1, если на все входы поданы сигналы 1.

Все возможные логические функции n переменных можно образовать с помощью комбинации трех основных операций: И, ИЛИ, НЕ. Поэтому такой набор называют логическим базисом или функционально полным. Используя законы булевой алгебры (табл. 1), можно доказать, что таковыми являются наборы из одной функции И-НЕ, ИЛИ-НЕ.

В базовых элементах одной серии использована одинаковая микросхемная реализация. Серия характеризуется общими электрическими, конструктивными и технологическими параметрами.

Интегральные микросхемы серии 155 представляют собой транзисторно-транзисторные логические (ТТЛ) элементы с 14 или 16 выводами. Базовым элементом серии является логический элемент И-НЕ, состоящий из многоэмиттерного транзистора VT1 и сложного усилителя-инвертора.

Таблица 1

Тип Элемента Логическая функция (операция) Обозначение Логической Операции Таблица истинности Условное Изображение
x 1
x 2
Элемент НЕ (инвертор) Логическое Отрицание, Инверсия ùx x X 1 y
Элемент И (конъюнктор) Логическое умножение, Конъюнкция x 1 ·x 2 x 1 x 2 x 1 Ùx 2 x 1 &x 2 x 1 ·x 2 x 1 & y x 2 y=x 1 ×x 2
Элемент ИЛИ (дизъюнктор) Логическое сложение, Дизъюнкция x 1 +x 2 x 1 Úx 2 x 1 +x 2 x 1 1 y x 2 y=x 1 +x 2
Элемент И-НЕ (элемент Шеффера) Отрицание конъюнкции _____ x 1 ·x 2 _____ x 1 ·x 2 x 1 & y x 2 y=
Элемент ИЛИ-НЕ (элемент Пирса) Отрицание дизъюнкции _____ x 1 +x 2 _____ x 1 +x 2 x 1 1 y x 2 y=

В настоящее время применяется несколько разновидностей серий микросхем с элементами ТТЛ: стандартные (серии 133; К155), высокого быстродействия (серии 130; К131), микромощные (серия 134). Кроме расширения номенклатуры элементов серий К531 и К555 сейчас активно развиваются наиболее перспективные серии ТТЛШ - микромощная К1533 и быстродействующая К1531, выполненные на основе последних достижений технологии изготовления ИС - ионной имплантации и прецизионной фотолитографии.

В последние годы получили развитие программируемые логические элементы, на которых с помощью программаторов можно построить многие цифровые устройства.

Любая сложная логическая функция может быть реализована с помощью ЛЭ, выполняющих элементарные функции И-НЕ, ИЛИ-НЕ. Пусть требуется составить комбинационную схему с четырьмя входами x 1 , x 2 , x 3 , x 4 и одним выходом y . Высокий уровень напряжения должен появляться на выходе только при наличии высоких уровней на трех входах, т.е. y =1 при x 1 =x 2 =x 3 =1 и x 4 =0. Такую схему можно составить путем подбора элементов. Например, элемент 3И-НЕ при подаче на его входы x 1 =x 2 =x 3 =1 дает на выходе сигнал y 1 =0. Подавая его и x 4 =0 на вход элемента 2ИЛИ-НЕ, получаем y =1(рис.1).

Порядок выполнения эксперимента:

1) Установить блок логических элементов (ЛЭ).

2) Подключить источник питания ГН1 к гнёздам "5В".

3) Изучить принцип работы ЛЭ. Для этого подавать на их входы сигналы (0 или 1). Выходы контролировать при помощи логического тестера.

4) Собрать на ЛЭ комбинационные схемы (рис.2).



Проверить их работу. Составить таблицы истинности исследуемых схем.



1. Название работы.

2. Цель работы.

3. Схемы логических элементов.

4. Таблицы истинности.

5. Вывод по работе.

В выводе указать назначение логических элементов и область их применения.

Контрольные вопросы:

1. Какие операции алгебры логики Вы знаете?

2. Приведите примеры простейших цифровых устройств на основе логических элементов.

3. Поясните работу базовых логических элементов.

4. Как классифицируются ЛЭ по микросхемной реализации.

ИССЛЕДОВАНИЕ ТРИГГЕРОВ НА ЛОГИЧЕСКИХ ИМС .

Цель работы: изучение схем и функциональных возможностей основных типов триггеров; экспериментальное изучение триггеров и схем управления.




СЕРГИЕВ ПОСАД

Лабораторная работа № 1

Логические функции, ЭЛЕМЕНТЫ и схемы

Цель работы

Исследование логических функций, логических элементов и схем.

Приборы и элементы

Логический преобразователь.

Генератор слов.

Вольтметр.

Логические пробники.

Источник напряжения + 5 В.

Источник сигнала "логической единицы".

Двухпозиционные переключатели.

Двухвходовые элементы И, И-НЕ, ИЛИ, ИЛИ-НЕ.

Микросхемы серии 74.

Краткие сведения из теории

Аксиомы алгебры логики

Переменные, рассматриваемые в алгебре логики, могут принимать только два значения - 0 или 1. В алгебре логики определены отношение эквивалентности (обозначается знаком =), операции сложения (дизъюнкции), обозначаемая знаком , умножения (конъюнкции), обозначаемая знаками &, или точкой, и отрицания (или инверсии), обозначаемая надчеркиванием или апострофом ".

Алгебра логики определяется следующей системой аксиом:

x = 1, если x 0; x = 0, если x 1;

0&0 = 0; 1 1 = 1

1&1 = 1; 0 0 =0;

1&0 = 0&1 = 0; 0 1 = 1 0 = 1;

Логические выражения

Запись логических выражений обычно осуществляют в конъюнктивной или дизъюнктивной нормальных формах. В дизъюнктивной форме логические выражения записываются как логическая сумма логических произведений, в конъюнктивной форме – как логическое произведение логических сумм. Порядок действий такой же, как и в обычных алгебраических выражениях. Логические выражения связывают значение логической функции со значениями логических переменных.

Логические законы и тождества

При преобразованиях логических выражений используются следующие логические законы и тождества

Логические функции

Любое логическое выражение, составленное из n переменных с помощью конечного числа операций алгебры логики, можно рассматривать как некоторую функцию n переменных. Такую функцию называют логической. В соответствии с аксиомами алгебры логики функция может принимать в зависимости от значения переменных значение 0 или 1. Функция n логических переменных может быть определена для 2 n значений переменных, соответствующих всем возможным значениям n-разрядных двоичных чисел Основной интерес представляют следующие функции двух переменных х и у

f 1 (x,y) = x & y = x y = x – логическое умножение (конъюнкция),

f 2 (x,y) = x y – логическое сложение (дизъюнкция),

f 3 (x,y) = = – штрих Шеффера,

f 4 (x,y) = = – стрелка Пирса,

f 5 (x,y) = x y = – сложение по модулю 2,

f 6 (x,y) = – равнозначность.

Логические схемы

Физическое устройство, реализующее одну из операций алгебры логики или простейшую логическую функцию, называется логическим элементом. Схема, составленная из конечного числа логических элементов по определенным правилам, называется логической схемой. Основным логическим функциям соответствуют выполняющие их схемные элементы.

Таблица истинности

Так как область определения любой функции n переменных конечна (2 n значений), такая функция может быть задана таблицей значений f(i), которые она принимает в точках i, где i= 0,…,2 n -1. Такие таблицы называют таблицами истинности. В таблице 1 представлены таблицы истинности, задающие указанные выше функции.

Таблица 1

Значения переменных

x у f 1 f 2 f 3 f 4 f 5 f 6
0 0 0 0 0 1 1 0 1
1 0 1 0 1 1 0 1 0
2 1 0 0 1 1 0 1 0
3 1 1 1 1 0 0 0 1

Карты Карно

Если число логических переменных не превышает 5-6, преобразования логических уравнений удобно производить с помощью карт Карно. Цель преобразований - получение компактного логического выражения (минимизация). Минимизацию производят объединением соседних наборов (термов). Объединяемые наборы должны иметь одинаковые значения функции (все 0 или все 1). Для наглядности рассмотрим пример: пусть требуется найти логическое выражение для мажоритарной функции f m трех переменных x, у, z, описываемой таблицей истинности, показанной в Таблице 2.

Таблица 2

Мажоритарная функция

x y z f m
0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

Здесь номер строки равен числу i= 2 2 x+2 1 y+2 0 z, образованному значениями переменных.

Составим карту Карно. Она представляет собой нечто похожее на таблицу, в которой наименования столбцов и строк представляют собой значения переменных, причем переменные располагаются в таком порядке, чтобы при переходе к соседнему столбцу или строке изменялось значение только одной переменной. Например, в строке xy таблицы 3 значения переменных xy могут быть представлены следующими последовательностями 00,01,11,10 или 00,10,11,01. Таблицу заполняют значениями функции, соответствующими комбинациям значений переменных. Полученная таким образом таблица выглядит, как показано ниже (таблица 3).

Таблица 3

Карта Карно

мажоритарной функции

xy z 00 01 11 10
0 0 0 1 0
1 0 1 1 1

На карте Карно отмечаем группы, состоящие из 2 k соседних ячеек (2,4,8,) и содержащие 1, так как они описываются простыми логическими выражениями. Три овала в таблице определяют логические выражения xy, xz, yz. Каждый овал, объединяющий две ячейки, соответствует логическим преобразованиям:

Компактное выражение, описывающее функцию, представляет собой дизъюнкцию полученных при помощи карт Карно логических выражений. В результате получаем выражение в дизъюнктивной нормальной форме

f m = xy v xz v yz .

Если объединять 0, то получим выражение в конъюнктивной нормальной форме

f m = (x v y)(x v z)(y v z).

При реализации мажоритарной функции трех логических переменных получим схему, которая при подаче на ее входы трех сигналов сформирует на выходе сигнал, равный сигналу на большинстве входов (2 из 3 или 3 из 3). Эта схема применяется для восстановления истинного значения сигналов, поступающих на 3 входа, если возможна ошибка на одном из входов.

Для реализации этой функции на элементах 2И-НЕ необходимо провести следующие преобразования:

Для ДНФ получилось более простое выражение, поэтому его и следует реализовать. Соответствующая схемная реализация приведена на рис. 1.



Рис. 1

ИССЛЕДОВАНИЕ ЛОГИЧЕСКИХ ЭЛЕМЕНТОВ

Для описания алгоритма работы логических схем используется математический аппарат алгебры логики. Алгебра логики оперирует двумя понятиями: событие истинно (логическая "1") или событие ложно (логический "0"). События в алгебре логики могут быть связаны двумя операциями: сложения (дизъюнкции), обозначаемой знаком U или +, и умножения (конъюнкции), обозначаемой знаком & или точкой. Отношение эквивалентности обозначается знаком =, а отрицание – чертой или апострофом (") над соответствующим символом.

Логическая схема имеет n входов, которым соответствуют n входных переменных X 1 , … X n и один или несколько выходов, которым соответствуют выходные переменные Y 1 …. Y m . Входные и выходные переменные могут принимать два значения X i = 1 или X i = 0.

Переключающая функция (ПФ) логической схемы связывает при помощи логических операций входные переменные и одну из выходных переменных. Число ПФ равно числу выходных переменных, при этом ПФ может принимать значения 0 или 1.

Логические операции . Наибольший практический интерес представляют следующие элементарные операции (функции).

Логическое умножение (конъюнкция),

Логическое сложение (дизъюнкция),

Логическое умножение с инверсией,

Логическое сложение с инверсией,

Суммирование по модулю 2,

Равнозначность.

Логические элементы . Существуют цифровые интегральные микросхемы, соответствующие основным логическим операциям. Логическому умножению соответствует логический элемент "И". Логическому сложению соответствует логический элемент "ИЛИ". Логическому умножению с инверсией - логический элемент "И-НЕ". Логическому сложению с инверсией – логический элемент "ИЛИ-НЕ". Операции инверсии соответствует логический элемент "НЕ". Существуют микросхемы, реализующие и многие другие логические операции.

Таблицы истинности . Основным способом задания ПФ является составление таблицы истинности, в которой для каждого набора входных переменных указывается значение ПФ (0 или 1). Таблица истинности для логического элемента "НЕ" (логическая операция) имеет вид

Вход Х Выход Y

1.1. Исследование характеристик логического элемента "ИЛИ-НЕ"

Схема исследования логического элемента "ИЛИ-НЕ", представлена на рис. 1.

На схеме рис. 1 входы логического элемента "ИЛИ-НЕ" подключены к генератору слов, формирующего последовательность двоичных чисел 00, 01, 10 и 11. Правый (младший) двоичный разряд каждого числа соответствует логической переменной Х1, левый (старший)– логической переменной Х2. К входам логического элемента также подключены логические пробники , которые загораются красным светом при поступлении на этот вход логической "1". Выход логического элемента подключен к логическому пробнику, который загорается красным светом при появлении на выходе логической "1".

Построение схемы исследования логического элемента "ИЛИ-НЕ"

Запустите при помощи ярлыка на рабочем столе Windows программу Electronics Workbench .

Построение схемы рис. 1 произведем в два этапа: сначала разместим как показано на рис. 1 пиктограммы элементов, а затем последовательно соединим их.

1. Щелкните по кнопке

панели библиотек компонентов и контрольно-измерительных приборов. Из появившегося окна логических элементов вытащите пиктограмму логического элемента NOR ("ИЛИ-НЕ").

2. Щелкните по кнопке

Из появившегося окна последовательно вытащите пиктограммы логических пробников .

3. Разверните логические пробники, так как показано на рис. 1. Для этого на панели функций воспользуйтесь кнопкой поворота

4. Щелкните по кнопке

панели библиотек компонентов и контрольно-измерительных приборов. Из появившегося окна индикаторов вытащите пиктограмму генератора слов

5. Расположите методом буксировки пиктограммы элементов так, как показано на рис. 1 и соедините элементы согласно рисунку.

6. Двойным щелчком кнопки мыши откройте лицевую панель генератора слов .

В левой части панели генератора слов отображаются кодовые комбинации в шестнадцатеричном коде, а в нижней части - в двоичном.

7. Заполним окно шестнадцатеричного кода кодовыми комбинациями, начиная с 0 в верхней нулевой ячейке и далее с прибавлением 1 в каждой последующей ячейке. С этой целью щелкните по кнопке , в появившемся окне предустановок включите опцию Up counter и щелкните по кнопке Accept .

8. В окне Frequency установите частоту формирования кодовых комбинаций равной 1 Гц.

Последовательности двоичных чисел 00, 01, 10 и 11 соответствует в шестнадцатеричном коде - 0, 1, 2, 3. Запрограммируем генератор на периодическое формирование указанной последовательности чисел.

9. Наберите в окне Final число0003 ищелкните на кнопкеCycle .

10. Запустите процесс моделирования при помощи выключателя. Наблюдайте, при каких сочетаниях входных сигналов на выходе логического элемента появится "1". Щелкая по кнопке Step , заполните в Отчете таблицу истинности для элемента "ИЛИ-НЕ". Остановите процесс моделирования при помощи выключателя.

11. Сохраните файл в папке с вашей Фамилией под именем Zan_17_01 .

Цель работы . Ознакомление с основными функциями и законами алгебры логики, характеристи­ками логических микросхем, основами анализа и синтеза простых и сложных логических схем.

Краткие теоретические сведения.

Анализ работы цифровых устройств и синтез логических цепей произ­водится на основе математического аппарата алгебры логики или «булевой» алгебры, оперирующей только двумя понятиями: истинным (логическая «1») и ложным (логический «0»). Функции, отображающие такую информацию, а также устройства, формирующие функции алгебры логики, называются логическими. Логические функции нескольких переменных определяют характер логических операций, в результате которых набору входных переменных x 0 , x 1 ,…, x n -1 ставится в соответствие выходная переменная F

F = f (x 0 , x 1 ,…, x n -1 ).

Функция преобразования характеризуется таблицей, в которой каждой комбинации входных переменных соответствует значение выходной переменной F . Ее называют таблицей истинности.

Основными функциями алгебры логики, с помощью которых можно осуществлять любые логические преобразования, являются логическое умножение (конъюнкция), логическое сложение (дизъюнкция) и логическое отрицание (инверсия).

Алгебра логики позволяет преобразовывать формулы, описывающие сложные логические зависимости, с целью их упрощения. Это помогает в конечном итоге определять оптимальную структуру того или иного цифрового автомата, реализующего любую сложную функцию. Под оптимальной структурой принято понимать такое построение автомата, при котором число входящих в его состав элементов минимально.

Основные законы алгебры логики .

Переместительный закон:

a + b = b + а; ab = ba .

Сочетательный закон:

(a + b) + c = a + (b + c); (ab)c = a(bc).

Распределительный закон:

a(b + c) = ab + ac; a + bc = (a + b)(a +c).

Закон поглощения:

a + ab = a(1 + b) = a; a(a + b) = a + ab = a.

Закон склеивания:

ab + a = a ; (a + b )(a + ) = a .

Закон отрицания:

или
.

Логические элементы . Логические элементы используют в качестве значений входных и выходных напряжений лишь два уровня: «высокий» и «низкий». Если логическому «0» соответствует напряжение низкого уровня, а логической «1» – высокого, то такую логику называют положительной, и наоборот, если за логический «0» принимают напряжение высокого уровня, а за логическую «1» – напряжение низкого уровня, то такую логику называют отрицательной. В транзисторно-транзисторной логике (ТТЛ) напряжение логического «0» – U 0 со­став­ляет десятые доли вольт (менее 0,4 В), а напряжение логической «1» – U 1 >2,4 В. Логические элементы реализуют простейшие функции или систему функций алгебры логики.

Таблица 1

П ростейшей функцией алгебры логики является функция НЕ. Она реализуется с помощью инвертора, условное графическое обозначение которого приведено на рис. 1. На вход инвертора подается величинаX , которая может принимать два значения: «0» и «1». Выходная величина Y , при этом тоже принимает два значения: «1» и «0». Взаимно однозначное соответствие X и Y дается таблицей истинности (табл. 1), причем значение выходной величины Y зависит не от предыдущих значений, а лишь от текущего значения входной величины X : Y = .

Это справедли­во для всех логических элементов, не имеющих памяти, у кото­рых в таблице истинности значение Y не зависит от порядка строк.

Таблица 2

Л огическими элементами, реализующими функции логиче­ского сложения и логического умножения, являются элементы ИЛИ и И. Таблицы истинности для этих элементов однозначно связывают значение выходной величиныY со значениями двух (или более) входных величин х l , х 2 , ... x n . Условные графические обозначения логических эле­ментов ИЛИ и И приведены соответственно на рис. 2 и 3, а их таблицы истинности – в таблицах 2 и 3. Например, для логического элемента 2-ИЛИ, реализую­щего дизъюнкцию

Y = х l + х 2 или Y = х l х 2 ,

а для элемента 2-И, реали­зую­щего конъюнкцию

Y = х l х 2 или Y = х l х 2 .

Таблица 3

Н а наборе логиче­ских элементов И, ИЛИ, НЕ можно реализовать любую сколь угодно сложную логи­ческую функцию, поэ­тому данный набор элемен­тов на­зывают функциональ­но пол­ным.

На практике часто используется расширенный набор логических элементов, позволяющих также составлять функционально полные системы. К ним относятся элементы:

ИЛИ-НЕ (элемент Пирса), реализующий функцию

;

И-НЕ (элемент Шеффера), реализующий функцию

.

Их обозначения и таблицы истинности приведены на рис. 4 и в табл. 4.

Таблица 4


В частности функционально полные системы могут состоять из эле­мен­тов только одного типа, например, реализующих функцию И-НЕ либо ИЛИ-НЕ.

Комбинационные логические цепи – это такие цепи, выходные сигналы которых однозначно определяются сигналами, присутствующими на их входах в рассматриваемый момент времени и не зависят от предыдущего состояния.

Набор логических элементов, входящих в состав учебного стенда по основам цифровой техники не содержит элементов, реализующих функцию ИЛИ-НЕ, что ограничивает число вариантов построения логических схем при их синтезе и позволяет составлять схемы только в базисе элементов И-НЕ.

Прежде чем перейти к вопросам анализа и синтеза логических устройств в заданном базисе элементов (И-НЕ), необходимо составить таблицу, в которую будут сведены все возможные формы представления выходных сигналов указанных элементов при условии, что на их входы поданы логические переменные х l и х 2 . При синтезе схем можно использовать два технических приема: двойное инвертирование входного исходного выражения или его части и применение теорем Де-Моргана. При этом функция преобразуется к виду, содержащему только операции логического умножения и инверсии, и переписывается через условные обозначения операции И-НЕ и НЕ.

Последовательность проведения анализа и синтеза комбинационных логических цепей:

    Составление таблицы функционирования логической цепи (таблицы истинности).

    Запись логической функции.

    Минимизация логической функции и преобразование ее к виду, удобному для реализации в заданном базисе логических элементов (И-НЕ, НЕ).

Пример проведения анализа и синтеза логических цепей .

Пусть необходимо построить мажоритарную ячейку (ячейку голосования) на три входа, т.е. такую ячейку, у которой сигнал на выходе равен единице тогда, когда на двух или трех входах цепи присутствует сигнал единицы, в противном случае выходной сигнал должен быть равен нулю.

Вначале заполним таблицу истинности (табл. 5). Поскольку в данном случае имеются три входных сигнала х 1 , х 2 , х 3 , каждый из которых может принимать одно из двух возможных значений (0 или 1), то всего может быть восемь различных комбинаций этих сигналов. Четырем из этих комбинаций будет соответствовать выходной сигнал F , равный единице.

Таблица 5

x 1

x 2

x 3

Пользуясь данными табл. 5, можно запи­сать логическую функцию, кото­рую должна реализовать синтезируемая цепь. Для этого нужно представить эту функцию в виде суммы логических произведений, соответствующих тем строкам табл. 5 (3, 5-7), для которых функция F равна единице. Аргументы записываются без инверсии, если они равны единице и с инверсией, если равны нулю.

Если в синтезируемой таблице истинности выходная величина чаще принимает значение «1», то синтезируются строки, в которых выходная величина равна «0».

При выполнении заданной процедуры получим функцию

F = . (1)

Для минимизации (упрощения) данной функции нужно применить основные законы алгебры логики. Возможна следующая последовательность преобразований, например, с применением закона склеивания (теоремы Де-Моргана):

F = =

+
=
. (2)

Как видно, полученное конечное выражение гораздо проще исходного.

Аналогично проводится анализ (составление таблиц истин­ности) и более сложных логических схем.

Для выполнения задания предлагается набор наиболее распространенных логических элементов (рис. 5).

Рис. 5. Набор логических элементов для выполнения задания

Задание к лабораторной работе

1. Составить таблицы истинности для всех логических элементов, приведенных на рис. 5.

2. Для каждого логического элемента из набора представленных на рис. 5. составить логические выражения, реализующие их функции в базисе логических элементов НЕ и И-НЕ и начертить полученные тождественные схемы.

3. Собрать рассмотренные схемы на стенде и, путем перебора комбинаций входных сигналов, составить их таблицы истинности.

4. Используя законы отрицания (теоремы Де-Моргана) произвести преобра­зование минимизиро­ван­ной функции (2) для реализации ее в базисе логических элементов НЕ и И-НЕ и начертить полученную тождественную схему.

5. Собрать представленную схему на стенде и, путем перебора комбинаций входных сигналов, проверить соответствие ее работы таблице истинности (табл. 5).

Контрольные вопросы

    Что такое функционально полная система и базис логических элементов?

    В чем особенности синтеза логических устройств?

    В чем заключаются принципы минимизации логических устройств?

    Назовите основные операции булевой алгебры.

    Что отражают теоремы булевой алгебры? Сформулировать теоремы Де-Моргана: поглощения и склеивания.

    Какие цифровые устройства называются комбинационными?

ЛАБОРАТОРНАЯ РАБОТА № 5